Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mSystems ; 9(4): e0122523, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38470040

RESUMEN

Ectomycorrhizal fungi establish mutually beneficial relationships with trees, trading nutrients for carbon. Suillus are ectomycorrhizal fungi that are critical to the health of boreal and temperate forest ecosystems. Comparative genomics has identified a high number of non-ribosomal peptide synthetase and terpene biosynthetic gene clusters (BGC) potentially involved in fungal competition and communication. However, the functionality of these BGCs is not known. This study employed co-culture techniques to activate BGC expression and then used metabolomics to investigate the diversity of metabolic products produced by three Suillus species (Suillus hirtellus EM16, Suillus decipiens EM49, and Suillus cothurnatus VC1858), core members of the pine microbiome. After 28 days of growth on solid media, liquid chromatography-tandem mass spectrometry identified a diverse range of extracellular metabolites (exometabolites) along the interaction zone between Suillus co-cultures. Prenol lipids were among the most abundant chemical classes. Out of the 62 unique terpene BGCs predicted by genome mining, 41 putative prenol lipids (includes 37 putative terpenes) were identified across the three Suillus species using metabolomics. Notably, some terpenes were significantly more abundant in co-culture conditions. For example, we identified a metabolite matching to isomers isopimaric acid, sandaracopimaric acid, and abietic acid, which can be found in pine resin and play important roles in host defense mechanisms and Suillus spore germination. This research highlights the importance of combining genomics and metabolomics to advance our understanding of the chemical diversity underpinning fungal signaling and communication.IMPORTANCEUsing a combination of genomics and metabolomics, this study's findings offer new insights into the chemical diversity of Suillus fungi, which serve a critical role in forest ecosystems.


Asunto(s)
Agaricales , Hemiterpenos , Microbiota , Micorrizas , Pentanoles , Terpenos , Micorrizas/genética , Lípidos
2.
bioRxiv ; 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38045323

RESUMEN

Ectomycorrhizal fungi establish mutually beneficial relationships with trees, trading nutrients for carbon. Suillus are ectomycorrhizal fungi that are critical to the health of boreal and temperate forest ecosystems. Comparative genomics has identified a high number of non-ribosomal peptide synthetase and terpene biosynthetic gene clusters (BGC) potentially involved in fungal competition and communication. However, the functionality of these BGCs is not known. This study employed co-culture techniques to activate BGC expression and then used metabolomics to investigate the diversity of metabolic products produced by three Suillus species ( S. hirtellus EM16, S. decipiens EM49, and S. cothurnatus VC1858), core members of the Pine microbiome. After 28 days of growth on solid media, liquid chromatography-tandem mass spectrometry identified a diverse range of extracellular metabolites (exometabolites) along the interaction zone between Suillus co-cultures. Prenol lipids were among the most abundant chemical classes. Out of the 62 unique terpene BGCs predicted by genome mining, 116 putative terpenes were identified across the three Suillus species using metabolomics. Notably, some terpenes were significantly more abundant in co-culture conditions. For example, we identified a metabolite matching to isomers isopimaric acid, sandaracopimaric acid, and abietic acid, which can be found in pine resin and play important roles in host defense mechanisms and Suillus spore germination. This research highlights the importance of combining genomics and metabolomics to advance our understanding of the chemical diversity underpinning fungal signaling and communication. Importance: Using a combination of genomics and metabolomics, this study's findings offer new insights into the signaling and communication of Suillus fungi, which serve a critical role in forest ecosystems.

3.
Microorganisms ; 10(10)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36296289

RESUMEN

Microorganisms are critical drivers of biological processes that contribute significantly to plant sustainability and productivity. In recent years, emerging research on plant holobiont theory and microbial invasion ecology has radically transformed how we study plant-microbe interactions. Over the last few years, we have witnessed an accelerating pace of advancements and breadth of questions answered using omic technologies. Herein, we discuss how current state-of-the-art genomics, transcriptomics, proteomics, and metabolomics techniques reliably transcend the task of studying plant-microbe interactions while acknowledging existing limitations impeding our understanding of plant holobionts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...